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Closed-Form Green’s Functions for
General Sources and Stratified Media

Giilbin Dural, Member, IEEE, and M. 1. Aksun, Member, IEEE

Abstract—The closed-form Green’s functions of the vector and
scalar potentials in the spatial domain are presented for the
sources of horizontal electric, magnetic, and vertical electric,
magnetic dipoles embedded in general, multilayer, planar media.
First, the spectral domain Green’s functions in an arbitrary layer
are derived analytically from the Green’s functions in the source
layer by using a recursive algorithm. Then, the spatial domain
Green’s functions are obtained by adding the contributions of the
direct terms, surface waves, and complex images approximated
by the Generalized Pencil of Functions Method (GPOF). In
the derivations, the main emphasis is to put these closed-form
representations in a suitable form for the solution of the mixed
potential integral equation (MPIE) by the method of moments in
a general three-dimensional geometry. The contributions of this
paper are: 1) providing the complete set of closed-form Green’s
functions in spectral and spatial domains for general stratified
media; 2) using the GPOF method, which is more robust and
less noise sensitive, in the derivation of the closed-form spatial
domain Green’s functions; and 3) casting the closed-form Green’s
functions in a form to provide efficient applications of the method
of moments.

I. INTRODUCTION

UE to the increased use of multilayer microstrip geome-

tries in the application of microstrip antennas [1]-[6]
and monolithic microwave integrated circuits [7]-[11], the lay-
ered geometries have recently attracted widespread attention.
Therefore, a considerable amount of interest has been focused
on the development of a rigorous and yet computationally
efficient computer-aided design tools for microstrip geometries
in a layered medium.

The rigorous analysis of layered microstrip structures re-
quires the computation of the Green’s functions for multilayer
media, which are traditionally represented by the Sommerfeld
integrals in the spatial domain, and by closed-form expressions
in the spectral domain. When these traditional expressions for
the Green’s functions are employed in the method of moments
(MoM), the numerical evaluation of the MoM matrix elements
becomes very time consuming in either domain, because the
integrals involved are oscillatory and slow decaying functions
[12]. To alleviate this problem, the spatial domain Green’s
functions for the vector and scalar potentials, represented by
the Sommerfeld integrals, are approximated by closed-form
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Fig. 1. Sources embedded in a multilayer medium.

expressions and used in the solution of the mixed potential
integral equation (MPIE) by the MoM. This approach of
approximating the spectral domain Green’s functions was first
proposed in [13] for a horizontal electric dipole (HED) over
a thick substrate backed by a ground plane and extended to
a geometry with a substrate and a superstrate with arbitrary
thicknesses [14], using the original and least-square Prony’s
methods [16], respectively. It was demonstrated that the use
of the closed-form Green’s functions in the analysis of a
microstrip geometry via the MoM improves the computational
efficiency significantly [15].

In this paper, the closed-form Green’s functions of the vec-
tor and scalar potentials of a Horizontal Electric Dipole (HED),
Horizontal Magnetic Dipole (HMD), Vertical Electric Dipole
(VED), and a Vertical Magnetic Dipole (VMD) located in an
arbitrary layer of a planar-layered medium are presented. The
layers are considered to have different dielectric and magnetic
propetties (e, pi) or are made of perfect electric or magnetic
conductors (PEC, PMC), as shown in Fig. 1. The Green’s
functions are first obtained in the spectral domain, which can
be represented in closed-form, in the source layer and these
expressions are extended to an arbitrary layer using an iterative
algorithm [8] for TE and TM components individually. Then,
the spatial domain closed-form Green’s functions are obtained
by adding the contributions of the direct terms and surface
waves to the complex images approximated by the Generalized
Pencil of Functions (GPOF) method [17], which is less noise
sensitive and more efficient than the Prony’s methods. Since
the spectral domain Green’s functions, excluding the direct
term and the surface wave components, are approximated by
the GPOF method, their dependence on z must be kept in
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explicit form to avoid the repeated use of GPOF approximation
and to increase the computational efficiency in cases of vertical
connections. Since the Green’s functions for the vector and
scalar potentials are not uniquely defined in stratified media
[18], [19]. the closed-form representations of an alternative
formulation of the Green’s functions are also provided, which
might be used in cases where the vertical and horizontal
sources are present at the same point [20].

Derivation of the closed-form Green’s functions are given
in Section II and the numerical considerations associated
with their evaluation are discussed. In Section III, some
numerical examples of the closed-form Green’s functions are
presented for two different multilayer geometries and the
approximate Green’s functions are compared with the exact
Green’s functions obtained by the numerical evaluation of the
corresponding Sommerfeld integrals.

II. FORMULATION

A general planar-layered medium is shown in Fig. 1. The
source, (HED, HMD, VED or VMD) is embedded in region ¢
and the observation point can be located in an arbitrary layer.
Each layer can have different electric and magnetic properties
(€r, r) and thickness (d,). The perfect electric or magnetic
conducting planes and half space are also considered as layers
for the formulation. The procedure for deriving the closed-
form Green’s functions can be summarized as the following
steps:

1) Derivation of the Green’s functions in the spectral

domain.

a) Green’s functions are derived in the source layer.

b) Green’s functions in the observation layer are ob-
tained using an iterative algorithm applied to each
TE and TM component of the Green’s functions in
the source layer.

2) Derivation of the spatial domain, closed-form Green’s
functions.

a) Spectral Domain Green’s functions, after having the
surface wave poles and the direct terms extracted,
are approximated in terms of complex exponentials
obtained from the GPOF method.

b) Closed-form Green’s functions are obtained ana-
lytically using the Sommerfeld identity for each
complex exponential.

The derivation of the Green’s functions for the vector and
scalar potentials in the spectral domain follows the similar
procedure given in [8], where the Green’s functions for the
electric and magnetic fields are obtained. Thus, the derived
Green’s functions, without giving the details of the derivation,
are given in Section II-A with all the necessary definitions
of the reflection coefficients and amplitudes for the sake of
completeness and for later references.

All of the Green’s functions presented here are for the vector
and scalar potentials that are indeed not uniquely defined in
stratified media [18], [19]. Therefore, different sets of Green’s
functions for the vector and scalar potentials can be chosen
to satisfy the same boundary conditions. The following form
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of the Green’s function is commonly used and referred as the
traditional form for the vector potentials

Gar = (88 +90)Gao + 528G 0 + 320Gy + 323G, (1)

and for the scalar potentials, G3°;" and G2™ [20]. Note
that in this representation, the scalar potentials of the point
charges associated with the horizontal and vertical dipoles are
not identical. This results in some difficulties in the solution
of the mixed potential integral equation for a geometry where
both the horizontal and vertical sources (HED and VED or
HMD and VMD) are present at the same point, as in the case
of a microstrip etch fed by a vertical probe. To overcome this
difficulty, an alternative formulation is proposed in [19] and
adopted in this paper to the procedure described above. The
alternative representations of the Green’s functions are given
in the Appendix.

A. Green’s Functions in the Spectral Domain

To derive the spectral domain Green’s function for the
source layer (layer 7), the 2 dependence of the fields in the
source region is written as the sum of the direct term and
up- and down-going waves due to the reflections from the
boundaries at z = —h and z = d; — h, respectively. The
coefficients of the up- and down-going waves can be obtained
in terms of the generalized reflection coefficients by applying
the appropriate boundary conditions. The spectral domain
Green’s functions (traditional form) in the source layer are
obtained for the sources of HED, HMD, VED, and VMD as

HED
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where @f}’F denotes the spectral domain Green’s functions
for the vector potentials in direction-¢ due to a unit j-directed
current element, G7™ represents the Green’s function of the
scalar potential in the spectral domain due to a unit ¢-directed
electric or magnetic current element, k7 = k2 + k2, the
superscripts A and F' represent the magnetic and the electric
vector potentials, respectively, g. and ¢,, represent electric
and magnetic scalar potentials, respectively. The coefficients,
Ay By, O Z‘,DZT are functions of the generalized re-
flection coefficients RTE,TM [8], and are given by
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and R and R are the Fresnel and generalized reflection
coefficients [8] for which the subscripts TE and TM represent
the polarization of the wave, and the superscripts (¢,¢ — 1)
or (i,i + 1) show the layer numbers. The subscripts ~ and
v used in the coefficients (12)-(17) represent the orientation
of the source, horizontal and vertical, respectively, while the
superscripts e and m denote the type of the source, electric and
magnetic, respectively. It should be noted that the horizontal
Green’s functions for the y-oriented dipoles can be obtained
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GAF GAF

simply by setting AF GAT [ky = GAF [k, and
G:Ze,m — é;]:e,m

The amplitudes of the up- and down-going waves in a layer
different from the source layer are related to those in the

adjacent layers by

—3(kz, q —kz) Y(h4zomy1)

A‘.— — A'.— Tj+17]‘€
i = i+ = ik, 24,
1—Rjt1Rj 177"

where A7 and A7, 1 are the amplitudes of the down-going
waves in layers j and j + 1, respectively, ( = i—m), T is the
transmission coefficient, and z,,, is the distance between the
lower boundary of the source layer ¢ and the lower boundary of
layer j (see Fig. 1). Similarly, the amplitudes of the up-going
waves in layer j = ¢ 4+ m can be written as

(22)

Tj——l je—j(sz—l ks, Y zm—1+d,—~h)
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Therefore, starting from the source layer, the field expressions
for any layer can be obtained iteratively [8].

B. Closed-form Green’s Functions in the Spatial Domain

The spatial domain Green’s functions are represented by
the Sommerfeld integral [21] as

1 ~
GAFgedm — s dkpkaéz)(kpp)GAyp’Qevqm (k,) (24)

SIP
where G and G are the Green’s functions in the spatial and
spectral domains, respectively, H§2) is the Hankel function of
the second kind, and SIP is the Sommerfeld integration path.
The Sommerfeld integral given in (24) cannot be integrated
analytically, except for a few special cases. On the other hand,
if the spectral domain representation of the Green’s function,
G, in the integrand can be approximated in terms of complex
exponentials, then the analytical evaluation of the integral
(24) becomes possible via the Sommerfeld identity. Since the
contributions of the direct terms, e~7%=.17| /k, | and the surface
waves can be calculated analytically, they are excluded from
the expressions to be approximated, [13], [14].

In approximating the spectral domain Green’s functions,
the GPOF method, which is based on solving a generalized
eigenvalue problem, is used [17]. The spectral domain Green’s
functions, G, are uniformly sampled along an integration
path, k., = k[—jt+ (1 —¢/T,)] deformed from SIP [13] and
approximated by complex exponentials as

N
G E ame_bmk"z
m=1

where N is the number of exponentials used in the approxi-
mation. Then, the Sommerfeld identity

- -3 / dkﬂkﬂH<£2)(ka) =
2 Jsip

is employed to obtain the Green’s functions in the following
form, referred as the closed-form

G = Eam

(25)

e—ikr —jk=|z|

(26)
r

e ikrm

+ direct term + surface waves (27)

m
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where r,, = 1/p® — b2, represents a complex distance. Since
the surface wave contributions for thin-layered structures are
small, the exclusion of the surface wave contributions is
not critical for such geometries; meanwhile, the extraction
of the. surface wave poles could improve the approximation
for geometries with thick layers. Note that the approximation
of the spectral domain Green’s functions (2)—(11) must be
performed for the terms in the square brackets, i.e., the
terms are apart from 1/k,, after extracting the direct term
and surface wave poles, to0 be able to use the Sommerfeld
identity. In addition, k,, and k, parameters in G243 and G&F,
respectively, are excluded in the approximation and their
contributions are added in the spatial domain (after having
obtained the spatial domain representations of G4 /k,, and
GAT /k,) by differentiating analytically with respect to 2 and
y, respectively.

C. Closed-Form Green’s Functions for MoM Applications

So far, a general procedure to obtain the closed-form
Green’s functions for the vector and scalar potentials has been
explained, but nothing has been done yet to make these closed-
form expressions numerically efficient when they are used
in conjunction with the method of moments. As mentioned
above, the terms in the square brackets in (2)—(11) are to be
sampled uniformly along k,; and approximated by complex
exponentials. To do so, one needs to fix the vertical coordinate
variable z; that is, the approximation technique GPOF has
to be applied for each z value involved in the analysis.
For cases of horizontal conductors only, this wouldn’t cause
computational inefficiency because the conductors must be
placed at constant z-planes, resulting in the following MoM
matrix element:

1 0 0B
A Ge Tn
(Towm, Goy * Byn) + ) <Tmm, 9z {Gm * 5 }> (28)

where T,,, and B,, are testing and basis functions, respec-
tively. G2, and G¥ used in this formulation are approximated
by GPOF for constant z’s corresponding to the planes of the
conductors in the geometry. However, in geometries with both
vertical and horizontal conductors with z and z-directed cur-
rent components, respectively, typical MoM matrix elements
can have the terms of

a OB
sza GA Bacn zmy o L e
( za ¥ >7 <T 782 l:Gx * A :|>
A ﬁ qe OB:n
(Lo, G2, * Bon), <sz, pp G2 x 5 29)

where G4,,G2, G4 and G% need to be approximated at
every observation point z and/or source point 2z’ values (as-
suming the origin is at the bottom of the source layer for the
application of the MoM, the coordinates used in the derivation
of the Green’s functions here can be transformed by z « z —
2/, h — 2') in the integration due to the testing and expansion
processes along a vertical conductor. This would defeat the
purpose of using the closed-form Green’s functions in a MoM
application. To circumvent the problem associated with the
testing process, which corresponds to integration along z, the
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HED, HMD

Fig. 2. Geometry of a 4-layer structure. Layer-0: PEC, Layer-3: half space,
€ry = 10,dy = 0.075 cm, €, = 2,d2 = 0.15 cm, €,y = 1,k = d3 for
HED and HMD, h = ds/2 for VED, z = 0.0 cm.

GPOF method can be applied to the complex coefficients of
e+7%x7 in all the Green’s functions except GA:F. Hence, the
z-dependence in the closed-form Green’s functions becomes
explicit and the testing procedure along the z-direction can
be performed analytically for some testing functions like
uniform and roof-top functions, which further improves the
computational efficiency of using the closed-form Green’s
functions in conjunction with the method of moments. Another
technique, proposed here, to overcome the above mentioned
difficulties is to interchange the order of integration (29),
provided that the basis and testing functions are so chosen
that the involved integrals are uniformly convergent [12],
and carrying out integration over z analytically for spectral
domain representation of the Green’s function multiplied with
the testing function. Next, the approximation method, GPOF,
is applied to the resulting spectral domain function. For the
inner product terms involving both the 2z and 2’ integrations,
these integrals can be performed analytically by using the
procedure described above and subsequently applying the
GPOF algorithm. Note that the spectral representations of the
Green’s functions are exponential functions of z and 2’, and
this permits us to carry out z and 2’ integrations analytically.

III. NUMERICAL RESULTS AND DISCUSSIONS

The closed-form Green’s functions presented in Section 11
can be used for planar-layered geometries having an arbitrary
number of layers with arbitrary layer parameters and general
sources. In this section, a multilayer geometry is investigated
for different types of sources and the Green’s functions ob-
tained using the closed-forms (approximate) are compared
with the exact Green’s functions, calculated by evaluating the
corresponding Sommerfeld integrals numerically.

The geometry investigated in this paper consists of a sub-
strate and a superstrate with three different dipoles (HED,
HMD, and VED) and modeled as a 4-layer structure with
the following parameters—Ilayer-0: PEC, layer-3: half-space,
e, = 10, €, = 2, €, = 1, di = 0075 cm, dy =
0.15 cm, as shown in Fig. 2. The horizontal dipoles (HED
and HMD) are located at the air-dielectric interface (h =
ds) and the vertical dipole is located in the middle of the
top layer (h = da/2). In all three cases, the observation
points are chosen at the source plane (z = 2’ = 0.0 cm),
which is the worst case as far as the convergence of the
Green’s functions are concerned. Figs. 3-9 show the mag-
nitude of G4,,[ G4, dz,G%,GE,  GI G2 and GI~ with
respect to the distance k,p, which are obtained using both
the closed-form representations and numerically evaluating the
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Fig. 3. Magnitude of the Green’s function for the vector potential, G4,

for an HED. Layer-0: PEC, Layer-3: half space, ¢, = 10,d; = 0.075 c¢m,
€ry =2,d2 = 0.15cm, €y = 1,h =dz,z2=00cm, f = 1 GHz.
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Fig. 4. Magnitude of the Green’s function for the vector potential,
J G4, dzx, for an HED. Layer-0: PEC, Layer-3: half space,
€y = 10,d; = 0.075 cm, €, = 2,d2 = 0.15cm, €5 = 1,h =ds,z2 =
0.0 cm, f = 1 GHz.

corresponding Sommerfeld integrals at a frequency of 1 GHz.
In Fig. 4 | [ G2, dz| is given, instead of |G|, because the
approximation is performed on GZ,/k,. Fig. 10 shows the
approximate and the exact Green’s functions, G2, calculated
using the alternative form.

In approximating the spectral domain Green’s functions
using the GPOF, the choice of the number of samples used to
represent a Green’s function in the spectral domain, the max-
imum sampled value of k., and the number of exponentials
used to approximate the spectral domain Green’s functions
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Fig. 5. Magnitude of the Green's function for the scalar potential, G2°, for
an HED. Layer-0: PEC, Layer-3: half space, ¢,; = 10,d; = 0.075 cm,
€rg =2,dy =015cm, €3 =1,h =ds,z=0.0cm, f =1 GHz.
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Fig. 6. Magnitude of the Green’s function for the vector potential, GZ,,
for an HMD. Layer-0: PEC, Layer-3: half space, ¢-; = 10,d; = 0.075 cm,
€ry = 2,d2 = 0.15cm, €, = 1,h =dg,z=00cm, f = 1 GHz

1.0

depend on the parameters of the multilayer geometry, the type
and the orientation of the dipole, and the Green’s function
to be approximated. For example, it is observed that fewer
sampling points, a fewer number of exponentials, and a smaller
value of T, are required for G2, than those required for
GZ-. This is because the vector potential contributes to the
far field in the spatial domain; the major contributions in the
spectral domain come from the region close to the origin. On
the other hand, the scalar potential, which contributes to the
near field dominantly, extends to larger values of k, in the
spectral domain. As one of the contributions of this paper, the
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Fig. 7. Magnitude of the Green’s function for the scalar potential, G3™,
for an HMD. Layer-0: PEC, Layer-3: half space, €,; = 10,d1 = 0.075 cm,
€y = 2,d2 = 0.15¢cm, €,; = 1,h =da,2=00cm, f =1 GHz.
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Fig. 8. Magnitude of the Green’s function for the vector potential, G’z“:,
for a VED, traditional representation. Layer-0: PEC, Layer-3: half space,
ery = 10,d1 = 0.075 cm, €y, = 2.d2 = 0.15cm, €y = 1,h =d2/2, 2 =
0.0 cm, f = 1| GHz.

1.0

approximation of the spectral domain Green’s functions by
complex exponentials is performed by using the GPOF [17].
This technique is more robust and less noise sensitive [22]
than the original and the least-square Prony’s methods. The
robustness of the technique comes from the fact that it utilizes
the singular value decomposition technique as an intermediate
step to extract the complex exponentials, through which the
number of exponentials used in the approximation can be
chosen as the number of the most significant singular values
either automatically or interactively. Consequently, the number
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Fig. 9. Magnitude of the Green’s function for the scalar potential, Gie,
for a VED, traditional representation. Layer-0: PEC, Layer-3: half space,
e, = 10,d; = 0075 cm, €, = 2,d2 = 0.15cm, 3 = 1,h = d2/2,2 =
0.0 cm, f — 1 GHz.
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Fig. 10. Magnitude of the Green’s function for the vector potential, G2 |
for a VED, alternative representation. Layer-0: PEC, Layer-3: half space,
ery = 10,d1 = 0.075 cm, €ry = 2.d2 = 0.15cm, €y = L,h = d2/2,2 =
0.0 cm, f = 1 GHz.

of exponentials chosen for each Green’s function in the
examples given in this paper is different. For example, in the
approximation of G2, of Fig. 3, the number of exponentials,
the number of samples, and the maximum sampled value T,
are chosen as 4 (including the direct term), 201, and 100,
respectively, while the same parameters are chosen as 10
(including the direct term with no surface wave extraction),
401, and 100 for G of Fig. 5. It should be noted that the
numbers given above are strongly dependent on the parameters
of the geometry and the source.
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IV. CONCLUSION

In this work, a complete set of closed-form, spatial domain
Green’s functions are provided in stratified media for general
sources. The closed-form Green’s functions are obtained using
the GPOF method, which is more robust and less noise
sensitive than the original Prony’s and the least-square Prony’s
methods. In addition, the Green’s functions are cast into a form
to increase the numerical efficiency in the MoM applications.
Numerical examples of the closed-form Green’s functions are
given for a multilayer medium. The approximate Green’s
functions are compared with the exact ones and very good
agreement is observed.

APPENDIX
ALTERNATIVE FORM OF GREEN’S FUNCTION

Since the vector and scalar potentials are not uniquely de-
fined in stratified media, different sets of Green’s functions for
the vector and scalar potentials are possible giving rise to many
different MPIE formulations [18], [19]. Among these Green’s
functions, three useful choices referred as formulations A, B,
and C, are given in [20]. In this paper, the formulation C is
chosen as the alternative form of the Green’s function and
given here as

Gar = (2% + §§)Gan + 228G 0 + 2§G 4y
+ 232G, + §2Gy, + 232G, 30)
and G9% ™ as the Green’s function for the scalar potential
for both horizontal and vertical dipoles, Fig. 1. Note that the
difficulties encountered in the traditional formulation due to
the difference between the scalar potentials of HED (HMD)
and VED (VMD) are alleviated in this formulation. In the
above form of the Green’s function, the terms associated with
the horizontal dipoles (G:F, GiuF, GAF, G4, F G ™, and
Gge”") remain the same as in the traditional form (2)—~(7);
two new entries, G2;F and GZ;F, are introduced and GZ¥
is modified for the vertical dipoles. For an x-oriented HED
and a z-oriented VED, the Green’s function components used
with the alternative form are adopted to the formulation given
in Section II-A as

~ 1 Hy —q -Ui k2
GA - H ]khlzl Jka, 2 pe 2y
” jkzl[ze e 1277 2wl
kXCg — k2 Ds 1 k2
CAS -2 h 2, h 9k, 2 7 ge 2
[ ’ kp ”Jre 20t 2w
k2 BS + k2A¢TT
[_Bf] + __Z%}_JL] :| (31
k7
éA _ ;7_ _kxkz, eﬁ]kzzz Ae 1%202 - kiDi
= Tk, 2w v K2
. k2 B + k2 AS
+ ejkzl [_Be 4 = TR h:|:| (32)
v k2
P
where G”z“z, G‘fz are the alternative Green’s function compo-

nents in the source layer and A3 ,, By, ,,, Cf, Dy, are given in
the (12)~(17).
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