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Closed-Form Green’s Functions for

General Sources and Stratified Media
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Abstract-The closed-form Green’s functions of the vector and

scalar potentials in the spatial domain are presented for the
sources of horizontal electric, magnetic, and vertical electric,
magnetic dipoles embedded in general, multilayer, planar media.

First, the spectral domain Green’s functions in an arbitrary layer

are derived analytically from the Green’s functions in the source
layer by using a recursive algorithm. Then, the spatial domain

Green’s functions are obtained by adding the contributions of the
direct terms, surface waves, and complex images approximated
by the Generalized Pencil of Functions Method (GPOF). In

the derivations, the main emphasis is to put these closed-form

representations in a suitable form for the solution of the mixed

potential integral equation (MPIE) by the method of moments in

a general three-dimensional geometry. The contributions of this

paper are: 1) providing the complete set of closed-form Green’s
functions in spectrat and spatial domains for general stratified

media; 2) using the GPOF method, which is more robust and

less noise sensitive, in the derivation of the closed-form spatial
domain Green’s functions; and 3) casting the closed-form Green’s
functions in a form to provide efficient applications of the method
of moments.

I. INTRODUCTION

D UE to the increased use of multilayer microstrip geome-

tries in the application of microstrip antennas [1]-[6]

and monolithic microwave integrated circuits [7]–[ 11], the lay-

ered geometries have recently attracted widespread attention.

Therefore, a considerable amount of interest has been focused

on the development of a rigorous and yet computationally

efficient computer-aided design tools for microstrip geometries

in a layered medium.

The rigorous analysis of layered microstrip structures re-

quires the computation of the Green’s functions for multilayer

media, which are traditionally represented by the Sommerfeld

integrals in the spatial domain, and by closed-form expressions

in the spectral domain. When these traditional expressions for

the Green’s functions are employed in the method of moments

(MoM), the numerical evaluation of the MoM matrix elements

becomes very time consuming in either domain, because the

integrals involved are oscillatory and slow decaying functions

[12]. To alleviate this problem, the spatial domain Green’s

functions for the vector and scalar potentials, represented by

the Sommerfeld integrals, are approximated by closed-form
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Fig. 1. Sources embedded in a multilayer medium.

expressions and used in the solution of the mixed potential

integral equation (MPIE) by the MoM. This approach of

approximating the spectral domain Green’s functions was first

proposed in [13] for a horizontal electric dipole (HED) over

a thick substrate backed by a ground plane and extended to

a geometry with a substrate and a superstrata with arbitrary

thicknesses [14], using the original and least-square Prony’s

methods [16], respectively. It was demonstrated that the use

of the closed-form Green’s functions in the analysis of a

microstrip geometry via the MoM improves the computatiomd

efficiency significantly [15].

In this paper, the closed-form Green’s functions of the vec-

tor and scalar potentials of a Horizontal Electric Dipole (HED),

Horizontal Magnetic Dipole (HMD), Vertical Electric Dipole

(VED), and a Vertical Magnetic Dipole (VMD) located in an

arbitrary layer of a planar-layered medium are presented. The

layers are considered to have different dielectric and magnetic

properties (e,, ,ur.) or are made of perfect electric or magnetic
conductors (PEC, PMC), as shown in Fig. 1. The Green’s

functions are first obtained in the spectral domain, which can

be represented in closed-form, in the source layer and these

expressions are extended to an arbitrary layer using an iterative

algorithm [8] for TE and TM components individually. Then,

the spatial domain closed-form Green’s functions are obta~ined

by adding the contributions of the direct terms and surface

waves to the complex images approximated by the Generalized

Pencil of Functions (GPOF) method [17], which is less noise

sensitive and more efficient than the Prony’s methods. Since

the spectral domain Green’s functions, excluding the direct

term and the surface wave components, are approximated by

the GPOF method, their dependence on z must be kept in
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explicit form to avoid the repeated use of GPOF approximation

and to increase the computational efficiency in cases of vertical

connections. Since the Green’s functions for the vector and

scalar potentials are not uniquely defined in stratified media

[18], [19], the closed-form representations of an alternative

formulation of the Green’s functions are also provided, which

might be used in cases where the vertical and horizontal

sources are present at the same point [20].

Derivation of the closed-form Green’s functions are given

in Section II and the numerical considerations associated

with their evaluation are discussed. In Section III, some

numerical examples of the closed-form Green’s functions are

presented for two different multilayer geometries and the

approximate Green’s functions are compared with the exact

Green’s functions obtained by the numerical evaluation of the

corresponding Sommerfeld integrals.

II. FORMULATION

A general plamu-layered medium is shown in Fig. 1. The

source, (HED, HMD, VED or VMD) is embedded in region i

and the observation point can be located in an arbitrary layer.

Each layer can have different electric and magnetic properties

(+, w.) and thickness (d,). The perfect electric or magnetic

conducting planes and half space are also considered as layers

for the formulation. The procedure for deriving the closed-

form Green’s functions can be summarized as the following

steps:

1) Derivation of the Green’s functions in the spectral

domain.

a)

b)

Green’s functions are derived in the source layer.

Green’s functions in the observation layer are ob-

tained using an iterative algorithm applied to each

TE and TM component of the Green’s functions in

the source layer.

2) Derivation of the spatial domain, closed-form Green’s

functions.

a) Spectral Domain Green’s functions, after having the

surface wave poles and the direct terms extracted,

are approximated in terms of complex exponential

obtained from the GPOF method.

b) Closed-form Green’s functions are obtained ana-

lytically using the Sommerfeld identity for each

complex exponential.

The derivation of the Green’s functions for the vector and

scalar potentials in the spectral domain follows the similar

procedure given in [8], where the Green’s functions for the

electric and magnetic fields are obtained. Thus, the derived

Green’s functions, without giving the details of the derivation,

are given in Section II-A with all the necessary definitions

of the reflection coefficients and amplitudes for the sake of

completeness and for later references.

All of the Green’s functions presented here are for the vector

and scalar potentials that are indeed not uniquely defined in

stratified media [18], [19]. Therefore, different sets of Green’s

functions for the vector and scalar potentials can be chosen

to satisfy the same boundary conditions. The following form

of the Green’s function is commonly used and referred as the

traditional form for the vector potentials

—

G/l,F = (22 + jj)Gzz + 2tG2z + .2YG,Y + .MGzz (1)

and for the scalar potentials, G~ym and G’$’ m [20]. Note

that in this representation, the scalar potentials of the point

charges associated with the horizontal and vertical dipoles are

not identical. This results in some difficulties in the solution

of the mixed potential integral equation for a geometry where

both the horizontal and vertical sources (HED and VED or

HMD and VMD) are present at the same point, as in the case

of a microstrip etch fed by a vertical probe. To overcome this

difficulty, an alternative formulation is proposed in [19] and

adopted in this paper to the procedure described above. The

alternative representations of the Green’s functions are given

in the Appendix.

A. Green’s Functions in the Spectral Domain

To derive the spectral domain Green’s function for the

source layer (layer i), the z dependence of the fields in the

source region is written as the sum of the direct term and

up- and down-going waves due to the reflections from the

boundaries at z = –h and z = dj – h, respectively. The

coefficients of the up- and down-going waves can be obtained

in terms of the generalized reflection coefficients by applying

the appropriate boundary conditions. The spectral domain

Green’s functions (traditional form) in the source layer are

obtained for the sources of HED, HMD, VED, and VMD as

HED

G:z = J&#zl”l + &#.”+ C;.-A”] (2)

G:z _ –k

[

‘ kzkzz
—(A; + l?~)e”zz

2jkzz /%;

+ %(D; - C’~)e-~’”’ 1 (3)
P
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@ . &[e-i~z% 1“1+ C&k%’ + qe~% “] (9)
.

(11)

where G$F denotes the spectral domain Green’s functions

for the vector potentials in direction-i due to a unit j-directed

current element, G?’ m represents the Green’s function of the

scalar potential in the spectral domain due to a unit i-directed

electric or magnetic current element, k? = k: + ,&%, the

superscripts A and F represent the magnetic and the electric

vector potentials, respectively, qe and qm represent electric

and magnetic scalar potentials, respectively. The coefficients,
e,m

A B:’:, C;’:, D;:h,v, , , , are functions of the generalized re-

flection coefficients fiTE,TM [8], and are given by

em
A; = ~–jkz% (dt–h)~,t+l ~E ~M[e-~~zt (~t-h)

+ ft&~&e
–jkzt (d. +h) ~TUTM

1

em
Bh’ = e

–jk.t (d. –h)j&+l~M,TE[e-~k:(d.-h)

– @?~~Ee -~kz’(d’+h)lJ’fTM’TE

C:’m = ~E,TM[e-~k.. he–Azh#~-~

+ RJ~~Me -’kz’(2d’-wrE’TM
em_

D~ – ~M,TE[_e-w~–~kz%h%t~–~

+ &$;:TEe
-ikz’(2d’-h)lwM’TE

A:’m = e–~kzthjf,i-l TM,TE[e-~k%th

+ @$~~TEe -~k”’(2d’-h)lwM’TE

B:,m = e–~k.t(d,–h)~,i+l TM, TE[e-~k. Jd.-W

+ i2$&TEe -~k’’(d’+h)lwM’TE

C:,m = e-ik.t h&<~&E[_e –]k,% h

+ ti$~~T& -~kzJ2d’-hvwM’TE

D:>m = e–jkz%(di–h)$,i+l TM,TE[_e-WJdt-h)

+ Z!!&~Ee -~kz’(d%+h)lwTM’TE

where

[1 – &JJ*~&~~~~Me-’kz. 2d’]-1M%TE’TM =

pl,j - –jk,J ‘dJ

&wM = TE,TM + ‘%::Me

1 – Rj,j+@&;Me
–jk.J ‘dJ

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

and R and R are the Fresnel and generalized reflection

coefficients [8] for which the subscripts TE and TM represent

the polarization of the wave, and the superscripts (i, i – 1)

or (i, i + 1) show the layer numbers. The subscripts h and

v used in the coefficients ( 12)–( 17) represent the orientation

of the source, horizontal and vertical, respectively, while the

superscripts e and m denote the type of the source, electric and

magnetic, respectively. It should be noted that the horizontal

Green’s functions for the g-oriented dipoles can be obtained

simply by setting G~;F = G~;F, G$F / kg = G$F {kZ, and

G;’m = G2’m.

The amplitudes of the up- and down-going waves in a layer

different from the source layer are related to those in the

adjacent layers by

where A; and A;+ 1 are the amplitudes of the down-going

waves in layers j and j + 1, respectively, (j = z– m), T is the

transmission coefficient, and Zm is the distance between the

lower boundary of the source layer z and the lower boundary of

layer j (see Fig. 1). Similarly, the amplitudes of the up-going

waves in layer j = z + m can be written as

–j(kzj_l –k.j)(zm–l+dt–h)

A; = A:_l T~-l’~e (23)
1 – Rj,j_1Rj,3+1e

–~k.32dJ “

Therefore, starting from the source layer, the field expressions

for any layer can be obtained iteratively [8].

B. Closed-form Green’s Functions in the Spatial Domain

The spatial domain Green’s functions are represented by

the Sommerfeld integral [21] as

(#) F,%, %n – ~— J4T ~~p
dkPkPHj2)(kPp)GA’F; qe)gm (kP) (24)

where G and G are the Green’s functions in the spatial and

‘2) is the Hankel function ofspectral domains, respectively, Ho

the second kind, and SIP is the Sommerfeld integration path.

The Sommerfeld integral given in (24) cannot be integrated

analytically, except for a few special cases. On the other hand,

if the spectral domain representation of the Green’s function,

G, in the integrand can be approximated in terms of complex

exponentials, then the analytical evaluation of the integral

(24) becomes possible via the Sommerfeld identity. Since the

contributions of the direct terms, e–~kz. 121/k,t, and the surface

waves can be calculated analytically, they are excluded from

the expressions to be approximated, [13], [14].

In approximating the spectral domain Green’s functions,

the GPOF method, which is based on solving a generalized

eigenvalue problem, is used [17]. The spectral domain Green’s

functions, G, are uniformly sampled along an inte@iOII

path, k= = k[–jt+ (1 –t/To)] deformed from SIP [13] and

approximated by complex exponential as

N

G = ~ ame-b”kz. (25)

m=l

where N is the number of exponential used in the approxi-

mation. Then, the Sommerfeld identity

e–~kr
~

/

e–jkzlzl

—= —. dkPlcPH;2) (kOp) ~
2 s~p

(26)
r z

is employed to obtain the Green’s functions in the following

form, referred as the closed-form

N e–~ktrnz

G2~a.— + direct term+ surface waves (27)
rm‘m=l
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where rm = ~~ represents a complex distance. Since
the surface wave contributions for thin-layered structures are

small, the exclusion of the surface wave contributions is

not critical for such geometries; meanwhile, the extraction

of the surface wave poles could improve the approximation

for geometries with thick layers. Note that the approximation

of the spectral domain Green’s functions (2)–( 11) must be

performed for the terms in the square brackets, i.e., the

terms are apart from 1/kZt after extracting the direct term

and surface wave poles, to be able to use the Sommerfeld

identity. In addition, k= and kg parameters in G~;F and G$F,

respectively, are excluded in the approximation and their

contributions are added in the spatial domain (after having

obtained the spatial domain representations of G$JF /kz and

G$F/kv) by differentiating analytically with respect to z and
y, respectively.

C. Closed-Form Green’s Functions for MoM Applications

So far, a general procedure to obtain the closed-form

Green’s functions for the vector and scalar potentials has been

explained, but nothing has been done yet to make these closed-

form expressions numerically efficient when they are used

in conjunction with the method of moments. As mentioned

above, the terms in the square brackets in (2)–( 11) are to be

sampled uniformly along k=~ and approximated by complex

exponentials. To do so, one needs to fix the vertical coordinate

variable z; that is, the approximation technique GPOF has

to be applied for each .z value involved in the analysis.

For cases of horizontal conductors only, this wouldn’t cause

computational inefficiency because the conductors must be

placed at constant z-planes, resulting in the following MoM

matrix element:

‘TzmG’z*Bzn’++(Tzm~[G$*%l)’28)
z~ and Bz~ are testing and basis functions, respec-where T

tively. G& and G~ used in this formulation are approximated
by GPOF for constant z’s corresponding to the planes of the

conductors in the geometry. However, in geometries with both

vertical and horizontal conductors with z and x-directed cur-

rent components, respectively, typical MoM matrix elements

can have the terms of

(Tzm, G$. * %),
(T+G’*%l)

(Tzm, G:z * Bzn), (T-:be”w) ‘2’)
where G&, G~z, G~ and G? need to be approximated at

every observation point z andfor source point z’ values (as-

suming the origin is at the bottom of the source layer for the

application of the MoM, the coordinates used in the derivation

of the Green’s functions here can be transformed by .z +- z —

d, h +- z’) in the integration due to the testing and expansion

processes along a vertical conductor. This would defeat the

purpose of using the closed-form Green’s functions in a MoM

application. To circumvent the problem associated with the

testing process, which corresponds to integration along z, the

‘r- HED, HMD

Fig. 2. Geometry of a 4-layer structure. Layer-O: PEC, Layer-3: half space,

GI = 10, dl = 0.075 cm, c~z = 2, dz = 0.15 cm, +3 = 1, h = dz for
HED and HMD, h = dz/2 for VED, z = 0.0 cm.

GPOF method can be applied to the complex coefficients of

e~~k”~’ in all the Green’s functions except G#;F. Hence, the

z-dependence in the closed-form Green’s functions becomes

explicit and the testing procedure along the z-direction can

be performed analytically for some testing functions like

uniform and roof-top functions, which further improves the

computational efficiency of using the closed-form Green’s

functions in conjunction with the method of moments. Another

technique, proposed here, to overcome the above mentioned

difficulties is to interchange the order of integration (29),

provided that the basis and testing functions are so chosen

that the involved integrals are uniformly convergent [12],

and carrying out integration over z analytically for spectral

domain representation of the Green’s function multiplied with

the testing function. Next, the approximation method, GPOF,

is applied to the resulting spectral domain function. For the

inner product terms involving both the z and z’ integrations,

these integrals can be performed analytically by using the

procedure described above and subsequently applying the

GPOF algorithm. Note that the spectral representations of the

Green’s functions are exponential functions of z and z!, and

this permits us to carry out z and z’ integrations analytically.

III. NUMERICAL RESULTS AND DISCUSSIONS

The closed-form Green’s functions presented in Section II

can be used for plamu-layered geometries having an arbitrary

number of layers with arbitrary layer parameters and general

sources. In this section, a multilayer geometry is investigated

for different types of sources and the Green’s functions ob-

tained using the closed-forms (approximate) are compared

with the exact Green’s functions, calculated by evaluating the

corresponding Sommerfeld integrals numerically.

The geometry investigated in this paper consists of a sub-

strate and a superstrata with three different dipoles (HED,

HMD, and VED) and modeled as a 4-layer structure with
the following parameters-layer-O: PEC, layer-3: half-space,

‘TI = 10, e., = 2, e., = 1, cZl = 0.075 cm, dz =
0.15 cm, as shown in Fig. 2. The horizontal dipoles (HED

and HMD) are located at the air-dielectric interface (h =

d2) and the vertical dipole is located in the middle of the

top layer (h = d2/2). In all three cases, the observation

points are chosen at the source plane (z = z’ = 0.0 cm),

which is the worst case as far as the convergence of the

Green’s functions are concerned. Figs. 3–9 show the mag-

nitude of G&, J G:= dx, G~, G~Z, G~, G& and G~m with

respect to the distance k.p, which are obtained using both

the closed-form representations and numerically evaluating the
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Fig. 3. Magnitude of the Green’s function for the vector potentird, G~Z,
for an HED. Layer-O: PEC, Layer-3: half space, e,, = 10, dl = 0.075 cm,

E,2 =2, dz =0.15 cm, e~~ = l,h=dz, ~= O.Ocm, ~ = 1 GHz.
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Fig. 4. Magnitude of the Green’s function for the vector potential,

j G;z dx, for an HED. Layer-O: PEC, Layer-3: half space,

e~l = 10, dl = 0.075 cm, GZ = 2,dz = 0.15 cm, CT3 = l,h = dz, z =
0.0 cm, ~ = 1 GHz.

corresponding Sommerfeld integrals at a frequency of 1 GHz.

In Fig. 4 I J G#Z dzl is given, instead of lG& 1, because the

approximation is performed on G& /kZ. Fig. 10 shows the

approximate and the exact Green’s functions, G~Z, calculated

using the alternative form.

In approximating the’ spectral domain Green’s functions

using the GPOF, the choice of the number of samples used to

represent a Green’s function in the spectral domain, the max-

imum sampled value of k., and the number of exponential

used to approximate the spectral domain Green’s functions

zw,olG$l
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8.0

0 Exact
— Apprx.

6.0
-3.0 -2.0 -1.0 0.0 1.0

log,o(kop)

Fig. 5. Magnitude of the Green’s function for the scalar potential, G&, for
an HED. Layer-O: PEC, Layer-3: half space, 6,1 = 10, dl = 0.07!$ cm,

~~g =2, dz =0.15 cm, e~S = l,h= dz, z= O.Ocm, ~= 1 GHz.
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Fig. 6. Magnitude of the Green’s function for the vector potential, G~Z,
for an HMD. Layer-O: PEC, Layer-3: half space, e?, = 10, dl = 0.075 cm,

e~z =2, d2 =0.15 cm, e~3 = l,h=dz, z= O.Ocm, .f = 1 GHz.

depend on the parameters of the multilayer geometry, the type

and the orientation of the dipole, and the Green’s function

to be approximated. For example, it is observed that fewer

sampling points, a fewer number of exponential, and a smaller

value of T. are required for G& than those required for
G~. This is because the vector potential contributes tcl the

far field in the spatial domain; the major contributions in the

spectral domain come from the region close to the origin. On

the other hand, the scalar potential, which contributes to the

near field dominantly, extends to larger values of kP in the

spectral domain. As one of the contributions of this paper, the
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Fig. 7. Magnitude of the Green’s function for the scalar potential, G$m,
for an HMD. Layer-O: PEC, Layer-3: half space, 6,1 = 10, CZI = 0.075 cm,

e~~ =2, dz = 0.15cm,e~~ = l,h=dz.: = O.Ocm, f= 1 GHz.
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Fig. 8. Magnitude of the Green’s function for the vector potential, G$,,
for a VED, traditional representation. Layer-O: PEC, Layer-3: half space,

e~l = 10, dl = 0.075 cm, ~~z= 2 dz = 0.15 cm, G-s = 1, h = W2 z =
0.0 cm, f = 1 GHz.

approximation of the spectral domain Green’s functions by

complex exponential is performed by using the GPOF [17].

This technique is more robust and less noise sensitive [22]

than the original and the least-square Prony’s methods. The

robustness of the technique comes from the fact that it utilizes

the singular value decomposition technique as an intermediate

step to extract the complex exponentials, through which the

number of exponential used in the approximation can be

chosen as the number of the most significant singular values

either automatically or interactively. Consequently, the number

log,olG:l
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0 Exact
— Apprx.

9.0 I
-3.0 -2.0 -1.0 0.0 1

log,o(kop)

Fig. 9. Magnitude of the Green’s fnnction for the scalar potential, G~e,

for a VED, traditional representation. Layer-O: PEC, Layer-3: half space,

+, = 10, dl = 0.075 cm, e,, = 2, dz = 0.15 cm, e., = 1, h = d212,z =
0.0 cm, .f = 1 GHz. “
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Fig. 10. Magnitude of the Green’s fnnction for the vector potential, Gjz,
for a VED, alternative representation. Layer-O: PEC, Layer-3: half space,

~~1 = 10, dl = 0.075 cm, f~z = 2. dz = 0.15 cm, c~~ = 1, h = dz/2, z =
0.0 cm, .f = 1 GHz.

of exponential chosen for each Green’s function in the

examples given in this paper is different. For example, in the

approximation of G~Z of Fig. 3, the number of exponentials,

the number of samples, and the maximum sampled value TO

are chosen as 4 (including the direct term), 201, and 100,

respectively, while the same parameters are chosen as 10

(including the direct term with no surface wave extraction),

401, and 100 for G$ of Fig. 5. It should be noted that the

numbers given above are strongly dependent on the parameters

of the geometry and the source.
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IV. CONCLUSION

In this work, a complete set of closed-form, spatial domain

Green’s functions are provided in stratified media for general

sources. The closed-form Green’s functions are obtained using

the GPOF method, which is more robust and less noise

sensitive than the original Prony’s and the least-square Prony’s

methods. In addition, the Green’s functions are cast into a form

to increase the numerical efficiency in the MoM applications.

Numerical examples of the closed-form Green’s functions are

given for a multilayer medium. The approximate Green’s

functions are compared with the exact ones and very good

agreement is observed.

APPENDIX

ALTERNATIVE FORM OF GREEN’s FUNCTION

Since the vector and scalar potentials are not uniquely de-

fined in stratified media, different sets of Green’s functions for

the vector and scalar potentials are possible giving rise to many

different MPIE formulations [18], [19]. Among these Green’s

functions, three useful choices referred as formulations A, B,

and C, are given in [20]. In this paper, the formulation C is

chosen as the alternative form of the Green’s function and

given here as

and Ggcm as the Green’s function for the scalar potential

for both horizontal and vertical dipoles, Fig. 1. Note that the

difficulties encountered in the traditional formulation due to

the difference between the scalar potentials of HED (HMD)

and VED (VMD) are alleviated in this formulation. In the

above form of the Green’s function, the terms associated with
~ F GAF GA F GA, F (+&m, andthe horizontal dipoles (Gz~ , ~~ , .4 ,

G$’rn ) remain the same as in the traditionz?’f&rn (2)-(7);

two new entries, G&F and G&F, are introduced and G~; F
is modified for the vertical dipoles. For an z-oriented HED

and a z-oriented VED, the Green’s function components used

with the alternative form are adopted to the formulation given

in Section II-A as

[

k;%B; + k; A;,+ e~k.% _B: +
k’

P 11 (32)

where G:,, G:, are the alternative Green’s function compo-

nents in the source layer and A;, ~, B;,”, Cl, D; are given in

the (12)–(17).
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